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The flow of a tubular film. 

Part 1. Formal mathematical representation 

By J. €2. A. PEARSON AND C. J. S. PETRIET 
Department of Chemical Engineering, University of Cambridge 

(Received 6 September 1967 and in revised form 23 January 1969) 

An expansion scheme is developed to describe the steady axisymmetric flow 
of a thin tubular liquid film of varying radius; the necessary small parameter is 
provided by the ratio between the characteristic film thickness and the charac- 
teristic tube radius. The co-ordinate system used is an orthogonal one based 
on the fluid interface and the fluid streamlines. The differential equations 
that arise thus treat the metric as an unknown set of variables. The method is 
restricted to situations dominated by viscous forces. Reference is made to 
numerical solutions that have been obtained in connexion with an industrial 
polymer-film-blowing process. 

1. Introduction 
The practical problem which motivated the development of the formal ex- 

pansions outlined below concerns the steady axisymmetric flow of a thin tubular 
liquid film of varying radius. This flow is an idealization of part of the process of 
film-blowing which is used to manufacture thin films of polymeric materials 
(e.g. polyethylene). A sketch of the process (figure 1)) shows the region of interest 
which lies between the die exit where the free-surface flow begins and the ‘freeze- 
line’ where the polymer solidifies. Part 2 of this paper contains a more detailed 
description of the process (Pearson & Petrie 1969). 

The work discussed in this part of the paper provides a formal basis for part 2 
where equivalent equations are derived by more direct physical and geometrical 
arguments, and solutions are presented in order to suggest the practical rele- 
vance of the work. The more formal approach presented here gives a better 
picture of the approximations that are introduced, though of course the mag- 
nitude of their effects can only be assessed by a comparison of numerical pre- 
dictions with experimental results. The approach also provides a basis for the 
incorporation of several of the neglected factors into the analysis in order to 
improve the mathematical model of the process. 

One of the principal difficulties in this problem is connected with the fact 
that the position of the boundaries to the fluid flow is not known a priori) not 
even approximately. This difficulty is met here by choosing a co-ordinate system, 
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which has to be determined during the solution of the problem, such that the 
free surface and the boundary conditions there are expressible in simple terms, 
at  the expense of more complicated equations describing the flow as a whole 
(and more complicated initial, i.e. upstream, conditions). Even this does not 
lead to a manageable problem without taking further steps. 

Molten' 1 'Molten 
polymer Air supply polymer 

FIGURE 1. Sketch of the film-blowing process. Up to the guide rolls there is symmetry about 
the axis r = 0. The rolls are all cylinders with axes normal to the plane drawn. The 
guide rolls collapse the film from a tubular shape and the nip rolls seal the top edge of 
the bubble. Air is supplied only to maintain it pressure P above atmospheric pressure 
inside the bubble. 

If  we restrict consideration to an orthogonal co-ordinate system and to 
steady axisymmetric flow (without swirl) the equations become manageable, 
since the streamlines may be used as one set of co-ordinate lines. Thus we ob- 
tain the three-dimensional equivalent of the intrinsic equations of motion for 
two-dimensional flow (cf. Milne-Thomson 1955, p. 570). The other co-ordinate 
lines are the envelopes of the normals and binormals to the streamlines, the 
latter coinciding with the vortex lines for the axisymmetric flows considered 
here. The approach leads to a natural co-ordinate system in which to perform the 
expansions set out below for a thin film, and the condition of thinness is readily 
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expressed in terms of the scale factors associated with the co-ordinate system. 
This type of approach has also been used by Pearson (1967, p. 73) in a perturba- 
tion approach to the lubrication approximation. 

2. Formulation of the problem 

general (curvilinear) co-ordinates using dimensionless variables as 
For the steady flow the equations of motion and continuity may be written in 

and 

, for i = 1 , 2 , 3  
i= l  

3 

u;i = 0. 
j = 1  

The notation used is standard (covariant and contravariant) tensor notation 
with commas denoting covariant differentiation with respect to the co-ordinates 
d, x2 and x3, except that the summation convention is not used, i.e. all sums are 
explicitly stated. R is the Reynolds number, pULI,u, where p is the fluid density 
(the fluid is taken to be incompressible), ,u the fluid viscosity (or some 'typical' 
viscosity for a non-Newtonian fluid), U a typical fluid velocity and L a typical 
length. (The choice of Uand L is discussed below.) Physical quantities (denoted by 
a tilde) are used to define the dimensionless components of the velocity vector, 
ui, the extra-stress tensor,aif, the metric tensor, gif, and the pressure, p .  Thus, 
using bracketed suffixes to denote physical (rather than co- or contra-variant) 
components of velocity and stress 

G(i) = u(gii)*L-lu$ 

g..  = L2g . .  
t1  21 7 

qi)(j) = ,uu(gi'iigjj)3L-3cJ-ii, 

p = pUL-1p, 

and the total stress has components ( - pgij + Zij). 
Now for a Newtonian fluid the extra-stress is given by 

%)cj) = 2,uZ(i)(j) = ,u(%),(j) + G(j),(i)) 

and for an orthogonal co-ordinate system the metric tensor may be written 

If the streamlines are used as the x1 co-ordinate lines (so that ui = ( d , O , O ) )  
and the condition of axisymmetry (and no swirl) is used to remove partial 

1-2 
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derivatives with respect to x3, the rate of strain tensor has only five non-zero 

- ax2 ax2 h; axl ax1 ' 

a2h, ah, a In h, ah, a In h, +- ~ ax1ax2 - ax1 ax, ax2 ax1 ' 
~- -~ 

I 

\ (7 a-d) 

(and in dimensionless form gi = 2 4 ) .  [Compare Batchelor (1967, p. 600), where 
physical components e(i)(i) and 

Using these results and the compatibility relations for the scale factors hi 
(discussed below) equations (1) and (2)  reduce to 

( = uihi) are used.] 

Here also there is a degree of redundancy and i t  may be shown that it is sufficient 
to  satisfy two of the first three equations everywhere and the third along some 
axisymmetric surface (which is for ( 7 a )  any surface x2 = constant, or for (7b) 
any surface x1 = constant) and i t  follows that all four equations are satisfied. 

The compatibility relations ensure that the three functions h:, hi and h: 
are the non-zero covariant components of a diagonal metric tensor in Euclidean 
space, and that therefore the order of covariant differentiation is immaterial 
(given continuity of the appropriate partial derivatives). The conventional way 
of deriving these relations (see, for example, McConnell 1957, p. 152 ff.) is from 
the condition that the Riemann-Christoffel tensor is identically zero and there 
are in general six such relations (also called the Lam6 relations). For orthogonal 
co-ordinates these are given in McConnell (1957, p. 156, as example 9(vi)), 
a.nd here there is some redundancy. When the condition of axisymmetry (in 
the form of independence of quantities from x3) is used, the four equations below 
relating the three (non-zero) scale factors are obtained. 
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However, for convenience all four equations are retained and employed later, 
while realizing that essentially there are five independent equations relating 
the five dependent variables, p ,  ul, h,, h, and h,. 

Note. There is an analogous situation in linear elasticity where six strain 
components must satisfy three equilibrium equations and six compatibility 
relations. Here the difficulty may be avoided by going back to the underlying 
problem involving three displacement components which are given by the three 
equilibrium equations. A similar approach here would be possible, with three 
equations (continuity and two momentum equations) and the three basic 
unknowns being pressure and the co-ordinates (r ,  z of the cylindrical polar co- 
ordinates) of a material particle. The authors are grateful to Professor A. E. 
Green for pointing out the analogy. 

For a discussion of the general ideas underlying this part of the work see Aris 
(1962). 

3. Boundary conditions 
Before discussing boundary conditions, we must be more specific about the 

choice of co-ordinate system. It will help to introduce cylindrical polar co- 
ordinates (r,  +, x )  (with r the distance from the axis of symmetry, z the distance 
along the axis of symmetry, and $ the angular co-ordinate, see figure 2). We 
may clearly choose x3 = +, in which case the scale factor h, becomes r (and in- 
dependence from x3 does in fact mean axisymmetry). The choice of the stream- 
lines as the x1 co-ordinate lines means that stream tubes are surfaces x2 = constant 

- Axis of symmetry - 
FIGURE 2.  Idealized die exit geometry. (Lengths shown are dimensionless.) 

and we may choose x2 = 0 and x2 = 1 for the two free surfaces of the film. The 
origin is chosen at the inner edge of the die exit, so that x1 = 0, x2 = 0 corresponds 
to z = 0, r = 1. (This implies the choice of the length scale L to be the initial 
internal radius of the bubble.) If the dimensionless thickness of the film is E ,  



6 J .  R. A .  Pearson and C. J .  S. Petrie 

then the outer edge of the die exit is x = 0, r = 1 -t e or x2 = 1, x1 = constant. 
[The constant will only be zero if the streamlines at the die exit are all parallel 
to the axis of symmetry which need not be the case.] It is now still possible to 
specify the scale factors h, and h,, each along one co-ordinate line, since physical 
distances correspond to quantities h,dxi(see, for example, Darboux 1910, p. 164). 
For h, we specify that on x1 = 0, h, is constant, and the condition that the surface 
x2 = 1 passes through the points r = 1 + E ,  z = 0 will suffice to determine the 

constant (since the die gap, E ,  is also given by the integral h2(8r./ax2),&?' 

evaluated at .z = 0, and the geometry of the streamlines determines everything 
there except h2). We may specify h, along x2 = 0 and for simplicity havc chosen 

The free surface boundary conditions, of continuity of stress, lead to two 
equations at  x2 = 0 and two at x2 = 1. These are, at the inner surface (s2 = 0), 

!: 
h l=  1. 

that 

and 

where P is the constant (dimensionless) excess (i.e. above atmospheric) pressure 
inside the bubble, is the dimensionless surface tension, F/pU (or the ratio of 
Reynolds number to Weber number Wb = p UzLl? and is the physical surface 
tension), Pi is the dimensionless viscous stress tensor for the air, representing 
the effect of air drag. At the outer surface, x2 = 1, we have 

and 

When we use (3) to replace (T: and neglect surface tension and air drag (see 
discussion) we obtain: 

at  x2 = 0 

and at  x2 = 1 

The details of the upstream (initial) and downstream conditions are best 
considered in connexion with the asymptotic series expansion discussed next, 
since they are most naturally specified for x = constant and need to be transferred 
to x1 = constant. The velocity scale U is chosen to make a mean flow rate unity, 
and this again is left until the most convenient choice is obvious. 
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4. Asymptotic series approximation to the problem 
The general problem contained in (4)-( 7) is hardly tractable, and so an approxi- 

mation for a thin film is sought. The film thickness is h2dx2, and so is O(h,) 

on the length scale of the bubble radius (L).  The die gap gives the initial film 
thickness to be eL,  so that the scale factor h, is O(e), while the other scale 
factors are O( 1) .  Therefore if we postulate that the dependent variables 
are expressible asymptotically (as e+ 0) as power series in e, these will have the 
form 

1: 

\ h, = h,, + “h1, + Gh,, + . . . , 

, I h, = “h,, + “2h,, + . . . 

7 1  

h, = h,, + “h,, + “h,, + . . . 
u1= u, +“u,+“2u2+..., 

p =p,+€p,+eZp,+ ..., 

P = P,+eP,+s~P,+ .... ) 

Here 8 is the angle between a streamline at  any point and the direction of the 
axis of symmetry, which is used later. u1 is O( 1) by choice of velocity scale and p 
(measured relative to atmospheric pressure) may be shown to be O(1) (not 
O(6-l) as in the lubrication approximation because of the free surface boundary 
conditions applicable here). 

Formal substitution of the series (12) into equations (4)-(7) and boundary 
conditions (10) and (11) followed by the equating of powers of e leads to the 
equations of appendix A. Those that are used in the solution of the problem are 
set out, with some simplifications (e.g. the obvious use of a first-order equation 
to simplify a second-order one). 

The process of reduction of the 17 equations and 14 boundary conditions of 
appendix A to a pair of equations in the film thickness (h1J and bubble radius 
(h,,,) is somewhat involved and will not be presented in detail. The stages will 
be outlined briefly and then some alternative approaches which throw light on 
some of the unexpected features of the derivation will be discussed. In  particular, 
an attempt is made to explain the appearance of terms of higher order (e.g. 
h,,, hzl) in the equations which must be considered to obtain a complete ‘first- 
order’ problem. 

The first-order equations ( A l ) ,  (A4), (A6), (A8), ( A l l ) ,  (A13), (A15), to- 
gether with boundary conditions on u, (A 20) and on h,, (A 26), show that the 
five ‘first-order’ variables u,, p,, hol, h12, hO3, are independent of x2, and these 
equations are then all satisfied identically except for continuity (A 6) in which 
Qo must be constant. The further first-order boundary conditions (A 18), (A 19). 
(A 25) give equations for po  and h,, and require that Po is zero (discussed later), 
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We are therefore left with three equations relating these five functions of xl, 
namely 

and 

uoha,h12ha3 = q50 (constant), 

These may be thought of as giving hol, ua and pa in terms of h,, and ho,. 
These results lead to a considerable simplification of the second-order equations 

(A2), (A5), (A 7), (A9), (A 12) ,  (A 14), (A 16) and from these (and boundary 
conditions (A 23) and (A 28) ) it is deduced that the second-order variables are 
linear in x2. The relevant part of the second-order problem is then rewritten 
in terms of the five functions of xl, au,/ax2, apl/ax2, ah,,/ax2, i3h,,/ax2 and ah,,/ax2; 
and we obtain, using boundary conditions (A 21)  and (A 22) ,  five more equations 
involving these five new functions. 

We get a soluble problem by taking the third-order equations (A 3), (A 10) 
and (A 17) and boundary condition (A 24), since these introduce only the two 
new functions of X I ,  a2h,l/ax22 and i32u2/ax22. (In fact the velocity derivatives 
aul/ax2 and au,/ax2 are zero everywhere.) The elimination of the higher order 
quantities to get two equations in ha, and h,, is algebraic apart from one inte- 
gration to obtain ah13/ax2, and we get 

and 

where h‘ = dh/dxl, and the Reynolds number has been put equal to zero. (More 
details of this work are set out in appendix B.) 

There now follow the outlines of alternative approaches to two aspects 
of this formulation, the geometrical aspect and the series expansion aspect in 
connexion with the x2 dependence of quantities. Then an attempt is made 
to throw some light on the necessity of the appearance of ‘first-’, ‘second-’ and 
‘third-order’ quantities in obtaining a soluble ‘first-order’ problem. 

An approach to the geometrical part of the problem, which replaces the use of 
the compatibility relations, is to introduce the angle B(xl, x2) between a stream- 
line (at a point) and the direction of the axis of symmetry. Then the relationship 
between the ( X I ,  x2, x3) co-ordinate system and cylindrical polar co-ordinates 
( r ,  @, z )  is summarized by the equations 

x3 = $; 

h, = r ,  

dz = h, cos 6 dxl - h, sin 6 dx2, 

dr = h, sin 8 ax1+ h, cos 8 ax2. 

(18a-d) 
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From these we extract the relevant equations: 

and from the latter two 
a a 

ax2 ax1 
- (h, sin 0) = - (h, cos 0). 

Putting in the postulated asymptotic series (12) for the dependent variables 
gives the following (equating powers of B )  : 

a 
ax2 
-(~, ,cos~,)  = 0, 

a 
ax, - (h,, sin 0,) = 0, 

ah03 
ax1 

~ = h,,sin0, (an extra equation for the extra variable, e,), 

and the first-order equations of continuity and momentum show that the quan- 
tities u,, h,, and po are also independent of x2. Also we have 

ah.,, = h,, cos e,, 
ax2 

case __- ae ah12 860 ho,sin6 2 = -__ sinO,-h,,cos/3 - 
O ax2 O ax2 ax, O a d ’  

three equations giving ahl3/ax2, ah,,/ax2 and a0,/ax2 (as functions of x1 only), 
and we may get two third-order equations relating only i32h21/ax22, a26,/ax2z 
and known quantities. 

Thus we obtain the same information as from the four compatibility relations 
(7), by a process which has some advantages in case of geometrical interpretation 
but which perhaps lends itself less easily to use in more general situations. 

A reformulation of the series expansion stage of the process avoids the tedious 
deductions as to the x2 dependence of the various quantities, and also leads to 
the use of only one equation from most of the original equations, (4)-(7). This 
procedure does seem to have disadvantages (in dealing with boundary conditions 
and in an apparant loss of generality) and is most convincingly justified by the 
method used above. 
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The reformulation is carried out as follows: change variable from x2 to y, 
= ex2, and write sH, for h,. This merely leads to the formal replacement of x2 
by y and h, by H, in equations (4)-( 7) .  Now the free surfaces are y = 0 and y = e, 
and if the variables are expressed as Taylor series about y = 0 with the obvious 
equivalence with the quantities defined in equation (1 2) : 

au1 y 2 a w  

ay 2 ay2 
[E.g. u1 = u1(x’,O)+y-+-- -+ ...) 

au y2 aZu, 

ax2 2 
= uo(xl) + y -l+ - -. the derivatives are functions of x1 

(evaluated at  x2 = O ) . ]  

We get by neglecting O(y) terms, equations derivable from (A3), (A5),  (A6), 
(A lo), (A 14) and (A 17). [These come from equations (4), ( 5 ) ,  (6),  (7a ) ,  ( 7 c )  and 
( 7 4 ;  from ( 7 b )  we get an equation for a2h,,/axZ2 in terms of ‘first-’ and ‘second- 
order’ quantities.] 

Neither of these alternatives assist in providing an explanation of the occur- 
rence of ‘first-’, ‘second-’ and ‘third-order’ quantities, e.g. h,,, h,, and h2,, which 
all are required in deriving the final pair of equations governing h,, and h,,, 
the bubble radius and film thickness.? This explanation may, in part at  least, 
be obtained by considering the interrelation of the important physical effects, 
namely the viscous stresses due to the thinning of the film, the geometrical 
effect of the curvature of the film, and the pressure inside the bubble. The 
principal radii of curvature of the film are of order h,, and d2ho,/ax12 (dh,,/dxl is 
also involved-see part 2) and the viscous stresses are of order ( l/h12) dhlz/dxl 
and ( 1/ho3) dh,,/dxl. The internal pressure must balance forces of order eh12 
times these stresses divided by the radii of curvature, and so is O ( e ) .  [A higher 
pressure would correspond to a situation where the assumptions implicit in 
using and differentiating the expansions (12) were not valid, and would not 
permit the physical situation considered.] 

The non-zero d2ho,/dx1z implies a variation in scale factor h, of order e across 
the film, so that ei3h,,/ax2 is closely related to d2h,,/dx1’. Further, the thinning of 
the film necessary to give rise to the viscous stresses implies a convergence of 
the streamlines and consequently a curvature of the x2 co-ordinate lines (ortho- 
gonal to the streamlines). This curvature involves (l /hz) a2hl/ax22 and is of order 
1, so that a2h,/ax22 is of order e2; i.e. a2h2,/ax2z is the relevant quantity and this 
is closely bound up with the flow pattern giving rise to the viscous stresses. 
Similarly, it would be possible to indicate, on this somewhat intuitive basis, 
why all the other quantities involved are relevant in the first-order problem as 
it has been posed. 

t The authors are grateful to one of the referees for pointing out the similar situation 
which occurs in the theory of a solitary wave in shallow water (cf. Kollcr 1948, p. 335 in 
particnlar). 
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5. Initial conditions 
The initial conditions for the problem are most naturally specified at  the 

die exit, that is at z = 0, while the problem has been posed in terms of xl. There- 
fore it is necessary to transfer the conditions from x = 0 to x1 = 0, using equations 
(18) and the expansions (12). Figure 2 illustrates the geometry of the die exit 
and shows the two sets of co-ordinate lines there. ( x  = 0 on OB, x1 = 0 on O A . )  

At constant x we see from (1 8 c) that 

h, cos 6' dxl - h, sin 6' dx2 = 0, 

so that, using this and (18d) 
dr = h, see 6' dx2. 

Using (12) in this dv = sh,,sec8,dx2+0(c2), 

and since h,, and B0 are independent of x2 this may be integrated across the film 
at  z = 0 to give 

E = ch12sec6'01z1=0, 

and so at  x1 = 0 h,, = C O S ~ ' ,  = ,/{I - (dho3/d&)2}. 

We also know that hO3(0) = 1, so that for the two second-order ordinary differen- 
tial equations (16) and (17) we require two more boundary conditions. 

Formally these could be the values of dho3/dx1 and dh,,/dxl at x1 = 0 (or 
at  some other value of xl) or the values of ho3 and h,, a t  some value of x1 other 
than zero. The choice relevant to the physical problem which motivated this 
work is discussed in part 2 of this paper. Reference to equations (3) and (6) 
shows that the values of dho3/dx1 and dh,,/dxl determine the first-order principal 
rates of strain and hence the principal stresses, so that prescribed surface trac- 
tions at  a flow boundary correspond to prescribed values of these derivatives. 

6. Discussion 
The problem tackled is a complicated one, and in this initial attempt at  a 

solution many factors have been ignored, either tacitly or with some explanation. 
The results which are obtained in part 2 are physically reasonable, which pro- 
vides some basis for the belief that no effect of major importance has been ignored. 
The main neglected factors are here discussed briefly and the feasibility of their 
formal incorporation into the solution scheme is considered. A more physically 
motivated discussion will be postponed to part 2 of this paper. 

Two effects which in practice do appear to be important are those of air drag 
and of temperature variation. The latter affects the flow through the temperature 
dependence of the viscosity, so that the energy equation must be introduced, 
with appropriate boundary conditions, in order to solve the full problem. Since 
the last stage of the solution is being done numerically, this does not present any 
difficulty in principle, but the details do not appear to be completely straight- 
forward. In  particular, work of Martin (Holmes-Walker & Martin 1966) suggests 
that the dominating effect is radiative cooling, and the appropriate physical 
parameters (especially emissivity) are not well known. Formally, an asymptotic 
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series, T = To + BT, + e2T2 + .. . , for the temperature ( T )  is introduced, and the 
dependence of p on T leads to the dependence of Pl in equation (16) on To(xl), 
because of the way P was made dimensionless. To is shown to be independent 
of x2, and its dependence on x1 determined from the energy equation and its 
associated boundary conditions. I n  part 2 a qualitative idea of the effect of this 
on the bubble shape is obtained by letting Pl vary with xl, in a predetermined 
manner, simulating the (qualitatively) known dependence of viscosity on xl. 

The air drag, which occasions the terms Pi and Pi in equations (8) and (9)) does 
not appear to  allow so straightforward a treatment. An approach to a similar 
problem is given by Taylor (1959), giving a way of attempting t o  refine the solu- 
tions obtained above which it is more appropriate to discuss in part 2. A formal 
incorporation of air drag into the work outlined above makes the problem much 
harder by introducing x2 dependence of quantities earlier than is convenient 
for the unsophisticated treatment used. To the extent that  the bubble shape is 
unaffected by the asymptotic process, B +  0, the airflow will be unaltered, so the 
stresses a t  the surface of the film will be O(1). (It may be, of course, that this will 
not lead to a feasible solution, which could be interpreted by saying that as the 
film gets thinner it is unable to  sustain the constant surface tractions applied, 
and our original assumptions are no longer going to hold.) Then Pi is O(s) ,  
since Pi is h2/hl times the physical component of the shear stress a t  the sur- 
face, and the boundary conditions on au1/ax2 are altered appropriately. The 
further difficulty arises that, if this is the only modification to our simplified 
problem, we still have a2ul/ax22 = 0, so that the surface shear stresses are 
constrained to  be equal, which implies that  the air drag force must act in 
opposite directions on the two surfaces, which is an unwelcome and physically 
unreasonable constraint. These considerations lead to the hypothesis that trans- 
verse velocity gradients will be non-zero only in a layer near each free surface of 
thicknesso(a). (Itwill havetobeofthickness O(~) , fornanin teger  3 2,topreserve 
the simple asymptotic scheme used here.) I n  effect we are led to  a double asymp- 
totic expansion in B and in some dimensionless measure ofthe air drag. This idea 
has not been followed up, since it will be extremely complicated, and it is argued 
that the approach employed here has provided a justification for solutions ob- 
tained in regions away from the free surfaces, and that the less formal approach 
discussed in part 2 is more likely to  lead to  a prediction of the overall effect of 
air drag. 

There appears to be no difficulty in principle in incorporating the effects of 
inertia and gravity (neither of which are believed to  be important here). The 
assumption once again is that  these factors are unaffected by the asymptotic 
process, so that the Reynolds and Froude numbers are both O(1). (The process 
is one of letting the film thickness tend to  zero while keeping its superficial 
velocity, not the volumetric flow rate, constant.) The effect of inertia is then 
found by retaining the term in R in each of equations (A3), (AS) and (A4) 
(where i t  vanishes since L%,,/i3x2 = 0) and we merely have to  solve (numerically) 
equations differing slightly from (16) and (17) with one extra parameter, R, 
to specify for each computation. 

The appropriate terms to insert into (4) and (5) to  take account of gravity are, 
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when gravity acts parallel to the axis of symmetry in the direction of z decreasing, 
G(hl/h2) ah3/ax2 to be added to ap/axl and - G(h,/hl) ah3/ax1 to be added to ap/axz. 
Here G = gL2/vU or G = R/F, where F is the Froude number U2/Lg. These 
terms will then contribute to equations (A 21, (A 3) and (A 5 )  when G = O( I), 
though the contribution to (A 2) will be zero since aho3/ax2 = 0 still holds. Terms 
G(h,,/h,,) ah1,/ax2 and - G(h12/hol) ah,,/axl are thus added to 8po/ad in (A 3) 
and 8pl/ax2 in (A 5) respectively. 

If we wish to try to take account of surface tension we must retain the terms in 
from equations (8) and (9). Since l7 is O ( l ) ,  being independent of the asymptotic 

limiting process, the significant equations for the first-order problem are different. 
The equation which corresponds to (16) (which is essentially a balance between 
viscous forces and a pressure difference of order c) is a balance between an order 1 
pressure difference and surface tension forces. Thus the asymptotic process 
provides no justification for the neglect of surface tension, and indeed it must 
give rise to the dominant forces for very thin films. This point has not been 
followed up in detail, and formally the relevance of the work reported here could 
be doubted. Physical reasoning does suggest that if we consider a particular film 
thickness the viscous forces may be an order of magnitude greater than the sur- 
face tension forces while the film is thinenough for thegeometrical approximations 
to give a reasonably accurate picture and physically useful predictions. 

Two assumptions which were important in obtaining manageable equations 
were those of steadiness and of axisymmetry. It appears that unsteady flow 
would be difficult to treat by the method used here. A time-varying co-ordinate 
system would involve the sort of complications that arise in a Lagrangian 
formulation of the equations of motion (cf. Lodge 1964, p. 328, and Batchelor 
1967, p. 71). It is felt that for non-steady flows in general other approaches may 
be more fruitful. The loss of axisymmetry would also lead to a more complicated 
problem, and the asymptotic expansion will lead to partial differential equations 
in x1 and x3 relating the variable here found to depend on x1 alone. 

One case where it might be possible to adopt this approach to take account 
of these factors is that which will arise in a linearized stability analysis of the 
flow found here. It seems reasonable to suppose that there will be no excessive 
difficulty in treating small departures from steadiness and axisymmetry. It 
seems to the authdrs that one of the more fruitful lines to pursue following this 
work will be a study of the feasibility of using this method to determine the 
stability of the steady axisymmetric flow. 

One important aspect of the problem which has been ignored concerns the 
details of the flow at the upstream and downstream ends of the regions for which a 
solution has been sought. Dependent to some extent on this, since more upstream 
conditions (and possibly downstream ones) are required, are the problems of 
taking account of higher order terms in the asymptotic expansions and of allow- 
ing for the elastico-viscous nature of the fluid. [No extra initial conditions appear 
to be needed for time-independent non-Newtonian behaviour, but for a fluid with 
memory the history of its flow before entering the region studied must in some 
sense be given, either by the flow field upstream of x = 0 or of derivatives with 
respect to z of the velocity at  z = 0.1 
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In  order to incorporate more terms of the asymptotic expansions more details 
of the velocity a t  x = 0 are required, to provide initial conditions on ul. It is 
not possible to set u1 = 0 at x = 0 since the requirement that uo is independent of 
x2 restricts the initial conditions, and in general the initial velocity must be 
u,(O) + O ( B ) ,  a constant term together with smaller terms allowing a variation 
of w1 with x2. Since in the body of the flow 8u,/8x2 is zero, these more general 
initial conditions must be accommodated by means of a transition region where 
the flow inside the die and the free-surface flow considered here may be matched. 
This is a singular perturbation problem of some difficulty, which is probably 
best attacked by a co-ordinate perturbation. It will provide an interesting 
problem, which the authors feel is best left until apparently more straightforward 
problems of this nature have been more fully explored (cf. Clarke 1968). 

A similar problem arises in connexion with the downstream boundary of the 
flow field, i.e. the region above the freeze-line (figure 1) where the solidification 
of the fluid takes place, followed by the stretching, flattening and winding up of 
the film. This is in some ways a harder problem practically, because of the rapid 
change of physical properties, but seems less important to further progress with 
the overall problem, and has not the fundamental significance of the die exit 
problem. 

In order that these difficulties may be avoided, it is argued that the effects of 
the regions where these transitions occur (both liquid to solid and constrained 
to free-surface flow transitions) are confined to a neighbourhood of the region 
concerned and their overall effect may be allowed for by experimentally deter- 
mined correction factors. Thus the initial values of the bubble radius and film 
thickness used in computations will not be the actual die dimensions, but will 
involve, for example, a multiplicative correction to the die gap to allow for the 
die-swell phenomenon (cf. Pearson 1966, p. 48). 

The problem of dealing with the non-Newtonian nature of the fluid-both in its 
shear-dependent viscosity and in its elastic properties-has not been considered. 
A generalized power law model for variable viscosity could be used without 
much additional complication, and effects would be similar to those of viscosity 
variation with temperature. It would be valuable to treat elastic effects, since 
here we have an elongational flow as opposed to a viscometric flow, so that 
material functions other than the three viscometric functions of Coleman & 
No11 (1961) will be appropriate, and a new class of data for distinguishing con- 
stitutive equations would in principle be obtainable. Some models of fluids with 
memory appear particularly well-suited to the treatment of this paper, e.g. 
the integral models of Walters (1962) and of Lodge (1964, p. 103). However, 
the questions of whether the results will be sufficiently sensitive to choice of 
constitutive equations to be useful in distinguishing experimentally between the 
many popular alternatives, and of whether useful progress can be made without 
more success with the die exit problem, remain to be settled. 

Against this exposure of a multitude of shortcomings can be set the fact that 
physically realistic results are obtained. The main features of the observed flow 
are shown by the numerical results discussed in part 2, and a more detailed 
criticism, giving indications of the weaker points of the above work, must await 
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comparisons of these numerical results with experimental results. The value of 
any quantitative predictions based on this work thus remains to be established, 
but the qualitative picture is one in which the authors have some confidence. 

The major part of this work was carried out while C. J. S. Petrie was in receipt 
of a Science Research Council Fellowship, and we should like to record our thanks 
to the Science Research Council and to the Head of the Department of Chemical 
Engineering, at  Cambridge, for enabling us to carry out this work. 

Appendix A 
Formal substitutioll of the expansions (12) into equations (4), ( 5 ) ,  (6) and (7) 

and into the boundary conditions (10) and (1 l), followed by equating powers of 
E leads to the following equations (some simplification of the higher order equa- 
tions has been carried out) : 

a 
= - ( U l h i 2  + 2u0h12h22) @ 

1 a 
-u O h2 l2 ax1 a [- uOh;,hq2 (- ax2 (ulh~l+2Uoholh11) 
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('1 g o :  u0h01h12h03 = $ O ( x 2 ) )  

(after one integration with respect t o  xl). 

The free-surface boundary conditions, neglecting the effects of air drag and 
surface tension, and writing the excess pressure inside the bubble, P,  as a series, 
Po+ePl+ ..., are (forallxl): 
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( l l a )  €1: p1=--+2u, 2% ah,, a(h,z/hl,) at x2 = 1, 
h,, ax1 ax1 

The conditions on the scale factors ($ 3) lead to 

h,, = 1 at x2 = 0, all X I ,  

h,, is const. at x1 = 0, all x2, 

hll = 0 at x3 = 0, all xl, 

h,, = 0 at x1 = 0, all x2. 

Appendix B. Derivation of equations (16) and (17) 
Following the scheme outlined in $4, from the results there obtained that 

uo,po, h,, and h,, are independent of x2, and from equations (13), (14) and (15) 
(which give h,, and u,, and p ,  in terms of h,, and h,,) the equations of appendix A 
are simplified. Equations (A 12) and (A 16) lead to ~2h1,/axz2 = 0, and a2h,,/i3x22 = 0, 
implying that ah,,/ax2 and ahl1/ax2 are independent of 9. Then equation (A 2), 
which reduces to a2(u1 + 2u, h , , ) / a ~ ~ ~  = 0, implies that au,/ax, is independent 
of x2 and so, from boundary conditions (A 23), is zero everywhere. Equation (A 5) 
gives 

whence ap1/ax2 is also a function of x1 only. 
Differentiating equation (A 7) and using the foregoing gives 

(B 2) = const. 

from condition (A28) and so ah,,/ax2 is independent of x2. Equations (A 17) and 
(A 3) respectively give 

12 

i a  +- 

so that a2h,,/ax22 and hence a2u,/8xz2 are independent of x2, and boundary 
2 F L M  40 
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condition (A24) then implies that  &,/ax2 = 0 everywhere. Finally equations 

Ph,, 1 ah,,ah,, (A 10) and (A 14) give us 
-- - 
a X i 2  h;, ax2 ax2 

and 

Now we have six equations relating the seven functions of x1 (namely h,,, hO3, 
ah,,/ax2, ah13/ax2, ah2,/ax2, apl/ax2 and a2h,,/ax2'), assuming that equations ( l 3 ) ,  
and (15) are used to eliminate uo and po. 

The seventh equation is obtained from boundary conditions (A2 l )  and (A22) 
taken together, which give 

The first step in the elimination is to solve equations (B 5) and (B 6 )  for ah,,/ax2 
and ah13/ax2 which proceeds as follows: 

hence integrating 

and the constant, E ,  may be shown to be 1 (cf. the geometrical arguments in the 
latter part of 8 4). 

Thus we have ahl3/ax2 = h,,J[l - (ah,-,,/a~~)~] (B 8) 

and ah,,/ax2 = - h,,(a2ho,/aX12)/~[i - (ah0,/aX1)2], (B 9) 

and we may substitute, using these and using (B 2) for ah,,/ax2, (B 3 )  for a2hZl/ax2', 
( B  1)  for apl/ax2, to obtain from (B 4) and (B 7)  two equations relating h,,, ho3 
and their derivatives. (As stated above, (13) and (15 )  are used to eliminate uo 
and po.) The resulting pair of equations are equations ( 1 6 )  and (17) in the main 
text. 
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